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Abstract In this work, a general boundary element pro-

cedure is proposed to obtain the effective elastic tensor of

solids containing randomly distributed micro-cavities in

terms of its primary elastic properties. The average-field

theory and a special boundary element formulation are

combined to carry out a statistical analysis on the numer-

ical results obtained for a Representative Volume Element

(RVE). The two-dimensional isotropic material is simu-

lated as a homogeneous matrix containing cylindrical

holes. In the proposed implementation each hole boundary

is modeled with a single boundary element. The average

variables of the micro-field are evaluated using boundary-

only data, which leads to a formulation particularly suitable

for Boundary Element Methods. Expressions for effective

elastic properties as a function of the micro-fields for both

isotropic and transversally isotropic hypothesis are derived.

Finally, the methodology is illustrated with some applica-

tion examples and the results are compared with analytical

and experimental results.

Introduction

Engineering materials, like everything in Nature, are hetero-

geneous when observed at a certain scale. The determination

of macroscopic characteristics of heterogeneous materials is

an essential problem in many applications of engineering

and science. The study of relationships between micro-

structural phenomenon and the macroscopic behavior not

only allows predicting the behavior of existing materials,

but also provides a tool for the designing microstructures

such that the resulting macroscopic behavior meets the

desired characteristics.

Currently, the use of numerical methods to solve dif-

ferential equations such as the Finite Element Method

(FEM) and the Boundary Element Method (BEM) is fully

generalized. The combination of micromechanics and such

numerical methods supplies a powerful tool for modeling

material behavior [1]. The BEM has already shown to be

very accurate and efficient when compared to other popular

methods for many problems in Solids Mechanics. In par-

ticular, the BEM can perform quite efficiently [2] in overall

properties predictions, since the spatial average scheme of

internal fields of the variables requires only data from the

microstructure boundary [3–8]. This work is addressed to

micro-porous materials consisting of an isotropic and

homogeneous matrix containing randomly distributed

cylindrical voids. In order to predict the linearly elastic

response of the material, a statistical analysis scheme is

used with the Effective Property Theory (also called

Average-Field Theory) [9, 10]. The theory predicts the

effective properties of a macroscopic sample of the mate-

rial based on the volume average of the stress field

extracted from micro-heterogeneous samples. Therefore,

macro-fields are defined as volume averages of the corre-

sponding micro-fields, and the effective properties are

determined from relationships between the averaged

micro-fields [10, 11]. The analysis must be accomplished

on a representative sample of material so that it incorpo-

rates a sufficient amount of micro-voids, known in the

literature as Representative Volume Element (RVE).
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In this work a general procedure to predict the effective

elastic tensor of random micro-porous materials is pre-

sented. A boundary element formulation [12, 13] is used to

model two-dimensional micro-structured material samples.

The formulation includes a family of special elements [14]

that allow the modeling of each micro-void as a single

special hole element. The microstructure discretization

strategy becomes simply the indication of the center of

each void, its radius and the element order, besides the

conventional outer boundary element mesh. Therefore the

amount of data and computational cost is considerably

reduced, and the discretization becomes simpler than the

conventional BEM or other methods (Fig. 1a). In addition,

a static condensation scheme [13] can be applied in order to

reduce the size of the system of equations. This is a wel-

come characteristic when the numerical analysis of the

RVE has to be performed many times such as during the

design phase of a new material or in the assessment of an

existing one within a statistical degree of confidence.

Expressions for effective properties as functions of the

micro-fields under both isotropic and transversally

isotropic hypothesis are derived. The developed numerical

tool is illustrated with some application examples.

Numerical modeling of material

In this section, the BEM formulation employed herein

is briefly summarized. For details the reader can be refer

[12–15].

Boundary integral formulation for a matrix containing

cylindrical holes

The direct boundary integral equation for displacements

[16] of an elastic solid can be applied to solve the boundary

value problem of a microstructure with domain X sur-

rounded by an outer boundary Co, containing cylindrical

micro-holes with boundary C. For each hole, a local

coordinate system X
_

i is defined with its origin coincident

with the hole center. The notation ð �_Þ is used to refer

variables in the local system. The origin of the local system

in the global co-ordinate system xi is determined by the

vectors zi, while the axis X
_

i are kept parallel to xi as is

indicated in Fig. 1b. Thus, a particular hole boundary point

x
_

i can be expressed as:

x
_

1 ¼ R cos h
x
_

2 ¼ R sin h
ð1Þ

where R is the radius of the hole. The components of

normal vector at x
_

i are expressed by:

n
_

1 ¼ �cos h
n
_

2 ¼ �sin h
ð2Þ

The boundary integral equation for the problem of a

matrix containing Nf cylindrical holes without internal

pressure and in absence of body force is given by [12–14]:

Cij nð Þui nð Þ ¼
Z

Co

Go
ij x; nð Þto

i xð Þ � Fo
ij x; nð Þuo

i xð Þ
h i

dC

�
XNf

n¼1

Z 0

2p
F
_f

ij R; h; n
_

� �
uf

i hð ÞRndh ð3Þ

where i, j denote Cartesian components, ui and ti are the

boundary displacements and tractions, Gij and Fij are the

Kelvin fundamental solution at a point n due to the unit

load placed at location x, and CijðnÞ are the geometric

factors of the boundary point n. The superscripts o and f

(no sum) refer to the quantities on the outer boundary of the

matrix and on the holes’ boundaries, respectively. Ana-

lytical expressions for the tensor F
_f

ij in the reference system

X
_

i can be found in reference [15] for the plane stress and

plane strain hypothesis.
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Fig. 1 (a) Special hole elements used in this work. (b) Local and

global reference system in a 3-noded hole element
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In order to numerically solve Eq. 3, the outer material

matrix boundary Co is discretized with discontinuous

quadratic elements. The displacements field on the

boundary of the hole C is interpolated with special shape

functions Mi so that each of those is modeled with a

single element. Trigonometric functions are used as base

for the element shape functions resulting in elements

with 3, 4, 5, and 6 nodes [14]. The shape functions of

these elements are presented in the Appendix. The dis-

placement boundary integral equation for the nth hole

boundary Cn interpolated using such functions is found

to be:Z
Cn

Ff
ij x; nð Þuf

i xð ÞdC ¼ Ub
i

Z 0

2p
F
_f

ij R; h; n
_

� �
Mb hð ÞRdh

ð4Þ

where Ub
i are the displacements of the node b in the

direction i and b range from 1 to the number of nodes of

the element. The integral in Eq. 4 contains strongly sin-

gular kernels which are directly evaluated resulting a

regularized hole element [15].

Once the collocation of the boundary integral equation

for each nodal point is preformed, a linear system of

equations results. After the imposition of the boundary

conditions, the system can be solved to provide

the approximate field of the unknowns on the boundary

[17].

Contrary to the conventional BEM, which would require

a fine meshing for each hole, the present approach allows

an efficient analysis, reducing significantly the input data

amount and the total number of degree of freedom without

compromising the overall accuracy. This is particularly

important in the analysis of material samples containing

hundreds or thousands of voids [18]. Note that a RVE FEM

analysis for high number of holes would waste a huge

amount of computational resources, since the results for

internal nodes play no direct role in effective properties

estimation, not to mention the overhead implied in mesh

generation.

Computational modeling of the material

Computational test of the material

The evaluation of the macroscopic elastic properties C�ijkm

of a heterogeneous material relies on the computation of

the following relationship between averages on the sample

volume X [9, 10]:

rij

� �
X¼ C�ijkm ekmh iX ð5Þ

or, using Voigt’s notation:

r11h iX
r22h iX
r33h iX
r23h iX
r13h iX
r12h iX

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼

c�11 c�12 c�13 c�14 c�15 c�16

c�21 c�22 c�23 c�24 c�25 c�26

c�31 c�32 c�33 c�34 c�35 c�36

c�41 c�42 c�43 c�44 c�45 c�46

c�51 c�52 c�53 c�54 c�55 c�56

c�61 c�62 c�63 c�64 c�65 c�66

2
6666664

3
7777775

e11h iX
e22h iX
e33h iX

2 e23h iX
2 e13h iX
2 e12h iX

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
ð6Þ

where �h iX¼
def 1

Xj j
R

X �dX is the spatial average operator, and

rij and eij are the stress and strain micro-fields within the

material sample, respectively. In order to Eq. 6 remain

valid, it must be applied necessarily on a RVE [9, 10].

Then, the microstructure can be computationally tested to

extract the stress and the strain micro-fields. The constants

of the elastic matrix are obtained solving the system of

equations (6). The sample of micro-structured material is

submitted to the same boundary conditions that would

generate uniform stress or strain fields in a homogeneous

body. Linear displacements conditions uijC ¼ Eijxj or

uniform tractions tijC ¼ Lijnj along the boundary of the

outer material matrix are generally considered, with

constant Eij and Lij. The most commonly used set of

linearly independent load cases are:

L; E ¼
b 0 0

0 0 0

0 0 0

2
64

3
75;

0 0 0

0 b 0

0 0 0

2
64

3
75;

0 0 0

0 0 0

0 0 b

2
64

3
75;

0 b 0

b 0 0

0 0 0

2
64

3
75;

0 0 b

0 0 0

b 0 0

2
64

3
75;

0 0 0

0 0 b

0 b 0

2
64

3
75

ð7Þ

where b is a constant load parameter. Each one of the six

independent load cases supplies six equations for a total of

36 equations from which the elastic constants in Eq. 6 can

be retrieved.

Effective properties of micro-porous materials

Some simplifications are assumed in the micro-structure

model. First, the microstructure consists of a homogeneous

and isotropic matrix containing randomly distributed

micro-voids. Each micro-void is considered cylindrical and

with traction-free boundary. No micro-structural changes

are allowed to happen within the load application history

(such as the nucleation and/or coalescence of micro-voids

or phase transformations in the matrix). Under these

assumptions, an explicit analysis is possible by considering

only the final load state. The response of the model is

limited to linear elastic behavior with infinitesimal strain in

the macro as well as in the micro-scale.

Since the effective properties of the material are com-

puted as indicated in ‘‘Computational test of the material’’
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section, it is necessary obtain the average fields hrijiX and

heijiX in the micro-structure. In order to satisfy the Hill’s

energy condition, the boundary condition must be of linear

displacement uijC ¼ Eijxj or uniform traction tijC ¼ Lijnj

[2]. It is numerically cumbersome to impose a traction-only

condition along the whole boundary in an explicit BEM

formulation, and therefore the linear displacements case is

considered here (in the absence of body forces this is

sufficient to guarantee the satisfaction of the Hill’s condi-

tion). Furthermore, after the average strain theorem, the

strain field is recovered straightforwardly by heiX ¼ E [10].

In BEM, the unknowns are initially evaluated on the

boundary, while the results at interior points are evalu-

ated as a post-processing stage. A simple way to

evaluate the RHS of Eq. 5 using boundary-only data is

outlined below.

Departing from the third-order tensor definition r� x ¼def

rijxk one has:

rijxk

� �
;j
¼ rij;jxk þ rijxk;j ¼ rij;jxk þ rijdkj ¼ rij;jxk þ rik

ð8Þ

and using the equilibrium equations of elasticity results:

rijxk

� �
;j
¼ �bixk þ rik ) rik ¼ rijxk

� �
;j
þbixk ð9Þ

Recalling the requirement of body forces absence, the

stress tensor field can be expressed as rik ¼ ðrijxkÞ;j, so that

the average stress is written as [9]:

rij

� �
X¼

1

Xj j

Z
X

rikxj

� �
;k

dX ð10Þ

where jXj considers the total volume of the matrix and the

voids as well. Applying the Green’s theorem to Eq. 10, it is

easily taken to the boundary:

rij

� �
X¼

1

Xj j

Z
Co

rikxjnkdC ð11Þ

and the integration is performed over the outer boundary of

the micro-structure C0 since the voids are stress free.

Considering that the boundary Co is discretized with

discontinuous quadratic elements, Eq. 11 can be rewritten

using the boundary traction data and the element shape

functions, yielding:

where NE is the number of elements on the boundary Co; T
j
i

and xj
i are the ith traction and coordinate components of the jth

local node of the kth element, respectively. /i and �/i stands for

the geometric (quadratic) and physical (modified quadratic)

element shape functions [17], while J is the Jacobian of the

transformation to the normalized space g ¼ ½�1;þ1�. In the

numerical implementation of the present work, these integrals

can be accurately computed with standard Gauss–Legendre

quadrature using three Gauss’s points. Note that the BEM is

particularly suitable for computing effective properties by

Eq. 11 since the only necessary data are the boundary trac-

tions (or displacements). These are primal variables of the

formulation and are obtained with great accuracy when

compared with other methods.

Expressions for effective Young’s modulus

and Poisson’s ratio in two-dimensions

Plane elasticity assumes hypothesis about the behavior in the

third dimension (x3), leading to the well-known models of

plane strain and plane stress state. Therefore, it is possible to

model a thin plate containing circular holes under plane

stress hypothesis or a solid containing long cylindrical holes

parallel to the x3 as a plane strain case [10]. When the micro-

constituents of the material are isotropic, the geometric

symmetry of the microstructure implies macroscopic

symmetry of the material. In a two-dimensional model, the

x3-plane must be a symmetry plane of the material. Taking

this into account and considering the inhomogeneity of the

microstructure, the most general case of the anisotropy

which can be considered is monoclinic symmetry (in three

dimensions). That symmetry is characterized by 13 inde-

pendent elastic constants. If ones considers an in-plane

anisotropy (also named transversally anisotropic or mono-

clinic material in three-dimensional elasticity), three load

cases are needed in order to recover the elastic constants

which determine the in-plane macroscopic behavior. The

following cases are considered here:

r11h iX
r22h iX
r12h iX

8<
:

9=
; ¼

c�11 c�12 c�16

c�21 c�22 c�26

c�61 c�62 c�66

2
4

3
5 b

0

0

8<
:

9=
;!

c�11 ¼
r11h iX

b

c�21 ¼
r22h iX

b

c�61 ¼
r12h iX

b

8>><
>>:

ð13Þ

rij

� �
X¼

1

Xj j
XNE

k¼1

T1
i T2

i T3
i

� �
k

Z 1

�1

�/1 gð Þ/1 gð Þ �/1 gð Þ/2 gð Þ �/1 gð Þ/3 gð Þ
�/2 gð Þ/1 gð Þ �/2 gð Þ/2 gð Þ �/2 gð Þ/3 gð Þ
�/3 gð Þ/1 gð Þ �/2 gð Þ/3 gð Þ �/3 gð Þ/3 gð Þ

2
4

3
5Jdg

x1
j

x2
j

x3
j

2
64

3
75

k

8><
>:

9>=
>; ð12Þ
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r11h iX
r22h iX
r12h iX

8<
:

9=
; ¼

c�11 c�12 c�16

c�21 c�22 c�26

c�61 c�62 c�66

2
4

3
5 0

b
0

8<
:

9=
;!

c�12 ¼
r11h iX

b

c�22 ¼
r22h iX

b

c�62 ¼
r12h iX

b

8>><
>>:

ð14Þ

r11h iX
r22h iX
r12h iX

8<
:

9=
; ¼

c�11 c�12 c�16

c�21 c�22 c�26

c�61 c�62 c�66

2
4

3
5 0

0

2b

8<
:

9=
;!

c�16 ¼
r11h iX
2b

c�26 ¼
r22h iX
2b

c�66 ¼
r12h iX
2b

8>><
>>:

ð15Þ

and the nine elastic constants of the plane can be obtained.

Note that the symmetry of the elastic constant matrix is not

taken into account.

In the case of the material studied here, the random

distribution of holes in the plane (x1, x2) leads to a statis-

tically isotropic behavior and the overall response in a RVE

results a transversally isotropic symmetry, either for plane

stress or plane strain models. With in-plane isotropy

hypothesis, the elastic constant matrices are given as

functions of the effectives Young’s modulus E* and the

Poisson’s ratio m*. For plane stress and plane strain they are

found to be, respectively:

C�PT ¼
E�

1� m�2

1 m� 0

m� 1 0

0 0
1�m�ð Þ

2

2
4

3
5 ð16Þ

and

where E�3 is the effective Young’s modulus in the x3-direc-

tion while the effective Poisson’s ratio m�3 is the normal

deformation in any in-plane direction due to a stress in x3-

direction. It is interesting to note that in the plane strain

model the in-plane behavior is a function of the response in

the third dimension, which should be assumed. This does not

happen in the plane stress model, where the constitutive law

is the same of the isotropic case. Therefore, the in-plane

constitutive law for the transversally isotropic material is

characterized by two elastic constants and a single load case

is sufficient to determine the overall response. However,

there are two situations that do not allow the evaluation of

these unknowns. If the boundary conditions are subjected to

pure shear (for example, E ¼ b0 0 2bcT), or a hydrostatic

state ðE ¼ bb b 0cTÞ, the system of equations resulting

from the relationship between averages does not have a solu-

tion. This means that the boundary conditions must have non-

null spherical and deviatoric components. It is also worth to

note that this requirement refers to a plane domain and it is not

considered a three-dimensional spherical or deviatoric state.

The expressions for E* and m* for a transversely iso-

tropic material now can be derived from the system of

equations (6) and the constitutive matrices (16) and (17).

The following expressions are obtained:

E ¼ b 0 0b cT!
E� ¼

1� r22h iX
r11h iX

	 
2

b
r11h iX

m� ¼ r22h iX
r11h iX

8>>>><
>>>>:

ð18Þ

E ¼ 0 b 0b cT!
E� ¼

1� r11h iX
r22h iX

	 
2

b
r22h iX

m� ¼ r11h iX
r22h iX

8>>>><
>>>>:

ð19Þ

for plane stress, and

E ¼ b 0 0b cT

!
E� ¼

4E�3 r11h iXþ r22h iX
� �

b2

N1 r11h iX� r22h iX
� �

m� ¼ 4E�3b r22h iX� r11h i2Xm�3 þ r22h i2Xm�23

N1

8>>>><
>>>>:

ð20Þ

E ¼ 0 b 0b cT

!
E� ¼

4E�3 r22h iXþ r11h iX
� �

b2

N2 r22h iX� r11h iX
� �

m� ¼ 4E�3b r11h iX� r22h i2Xm�3 þ r11h i2Xm�23

N2

8>>>><
>>>>:

ð21Þ

for plane strain state, where the following definitions are used:

N1 ¼ b r11h iXE�3 � 3b r22h iXE�3 þ r11h i2Xm�3 � r22h i2Xm�3
ð22Þ

N2 ¼ b r22h iXE�3 � 3b r11h iXE�3 þ r22h i2Xm�3 � r11h i2Xm�3
ð23Þ

C�PS ¼
E�2E�3

1þ m�ð Þ 1� m�ð ÞE�3 � 2m�23 E�
� �

1
E� �

m�2
3

E�
3

m�
E� þ

m�2
3

E�
3

0

m�
E� þ

m2
3

E�
3

1
E� �

m�2
3

E�
3

0

0 0
1�m�ð ÞE�

3
�2m�2

3
E�f g

2E�E�
3

2
6664

3
7775 ð17Þ
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It is known that in homogeneous solids containing

traction-free cavities parallel to the x3-direction, E�3
decreases with the volume fraction of the material, while m�3
remains the same of the matrix [10]. It is interesting to

rewrite the expressions (20–23) for micro-porous materials

as a function of matrix properties and volume fraction /:

E ¼ b 0 0b cT

!
E� ¼

4Em 1� /ð Þ r11h iXþ r22h iX
� �

b2

N1 r11h iX� r22h iX
� �

m� ¼ 4Em 1� /ð Þb r22h iX� r11h i2Xmm þ r22h i2Xm2
m

N1

8>>>><
>>>>:

ð24Þ

E ¼ 0 b 0b cT

!
E� ¼

4Em 1� /ð Þ r22h iXþ r11h iX
� �

b2

N2 r22h iX� r11h iX
� �

m� ¼ 4Em 1� /ð Þb r11h iX� r22h i2Xmm þ r11h i2Xm2
m

N2

8>>>><
>>>>:

ð25Þ

where

N1 ¼ b r11h iXEm 1� /ð Þ � 3b r22h iXEm 1� /ð Þ
þ r11h i2Xmm � r22h i2Xmm ð26Þ

N2 ¼ b r22h iXEm 1� /ð Þ � 3b r11h iXEm 1� /ð Þ
þ r22h i2Xmm � r11h i2Xmm ð27Þ

In the plane strain isotropic case, the expressions for

recovering the effective properties can be obtained setting

E3 ¼ E� and m3 ¼ m�:

E ¼ b 0 0b cT!
E� ¼

3 r22h iX� r11h iX
� �

r22h iX� r11h iX
� �

b
r11h iX

m� ¼ � r22h iX
r22h iX� r11h iX

8>>><
>>>:

ð28Þ

E ¼ 0 b 0b cT!
E� ¼

3 r11h iX� r22h iX
� �

r11h iX� r22h iX
� �

b
r22h iX

m� ¼ � r11h iX
r11h iX� r22h iX

8>>><
>>>:

ð29Þ

while for plane stress state the equations remain as in

Eqs. 18 and 19.

Application examples

In order to assert the validity of the proposed methodology,

some examples are presented in this section. First, a statis-

tical analysis is performed for a virtual material to determine

the size of the RVE, following [9]. The microstructure

topology is similar to the nodular cast iron (NCI). The

effective properties of the material are then estimated. The

second example shows the results obtained with the present

formulation for a plate containing a uniform array of the

holes. These results are compared to the numerical and

experimental works of references [19] and [20], respectively.

Example 1: NCI RVE analysis

Following [21–23], a homogenized microstructure is ana-

lyzed under plane stress state. Figure 2a shows a typical

micrograph of the spheroidal graphite cast iron studied. The

material matrix is considered ferritic. From the work of [24],

the properties of the ferritic matrix are set with Em ¼ 210 GPa

and mm = 0.3. The R/d is used as the characteristic parameter,

where R is the average void radius and d the average minimum

distance between void centers. In [25], a statistical analysis of

measurements performed on standard NCI micrographs using

image-processing software is accomplished. The results

obtained for the R/d parameter are shown in Table 1. It can be

seen that for a wide range of nodular counts, ranging from 60

to 600 nodules/mm2, R/d and its standard deviation are almost

constant with R/d = 0.25 and a standard deviation of 35%. In

all cases, there is 100% of nodularity (i.e., all graphite is in the

form of roughly equiaxed nodules). The graphite nodules

volume fraction is 7.7%.

The numerical model was built by generating the holes at

random locations, checking for superposition and matching

A

BC

D
(a) (b)

Fig. 2 Micro-porous material. (a) Typical micrograph sample of an

ADI (150 nodules/mm2). (b) Numerical model (volume fraction of

7.7% and an average ratio R/d = 0.25–140 voids)

Table 1 Results of statistical analysis performed on standard ADI

micrographs [25]

Nodules/area

(mm-2)

Nodularity

(%)

R/d
(average)

Standard

deviation (%)

60 100 0.27682 31.18

100 100 0.26175 37.56

150 100 0.25294 35.43

600 100 0.25625 32.62
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the experimental distribution data. An example is depicted in

Fig. 2b. Since there is no standard procedure to determine

directly the dimensions or number of heterogeneities to be

included in the RVE, the dimensions of the RVE are deter-

mined in a numerical way through successive increments of

the sample volume. The representative size of the sample is

such that it provides an invariant macroscopic response

(within certain bounds) for different distributions of inho-

mogeneities. Figure 3 illustrates different microstructure

samples used to determine the RVE size.

Fifty samples are simulated to study the effective response

of the microstructure, each one with a different random

distribution of voids. The 4-node hole boundary element [14]

was used to model the micro-void. Figures 4 and 5 present

the results obtained for E* and m*, respectively (Eqs. 18 or

19), with samples containing 25 voids in all cases. Each point

in these figures represents the result of a computational test.

Also observed are the maximum, minimum, average, and

standard deviation of the group of samples. Figures 6 and 7

depict the corresponding histograms of these results. The

simulations were carried out for microstructures containing

2, 4, 6, 8, 10, 15, 20, 25, 30, 40, 50, and 60 voids in order to

establish the RVE size. In all cases 50 computational tests

were performed. The results obtained are presented in Fig. 8

Fig. 3 Comparative visualization of the microstructure models used

to determine the RVE size
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Fig. 5 Effective Poisson’s ratio for 50 microstructures containing 25

voids randomly distributed in each case. The maximum, minimum,

average, and standard deviation values are indicated
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for the E*, while the results for m* are shown in Fig. 9.

Tables 2 and 3 summarize the statistical information of the

samples as average values of the effective mechanical

properties, difference between maximum and minimum and

standard deviation. The percentage deviation of these values

from the average is also presented.

These results points out that a micro-structured material

sample containing 25 voids is adequate to generate effec-

tive properties within approximate error bounds of 2.5%

for E* and 6.5% for m*.

It is also interesting to compare of these results with

analytical methods based on the consideration of a single

inhomogeneity in an unbounded domain (see, for instance [9,

10, 26]). Table 4 shows the estimated properties for the

diluted distribution (DD), Mori-Tanaka (MT), and the self-

consistent (SC) methods along with the averaged results

obtained through the present methodology using 25 voids. In

all cases, a plate with circular voids under plane stress and

macroscopic isotropic behavior are considered. While the

SC approach supplies the best agreement for that particular

volume fraction, all methods predict stiffer properties.

In order to illustrate the significant reduction in the

number of degrees of freedom when the proposed hole

element is used in the numerical model, a particular

microstructure topology is conventionally discretized with

discontinuous quadratic elements and a convergence study

is carried out. The sample contains 25 voids randomly

distributed. Figures 10–12 show the effective properties

and the strain energy (evaluated as 1
2

rij

� �
X eij

� �
X) conver-

gence obtained using progressively finer conventional

meshes ð(Þ and using the present 3, 4, 5, and 6-noded hole

elements ðMÞ: Table 5 reports the relative error for the

various hole elements when compared to the conventional

BEM using the finest mesh from Figs. 10–12 (2,784

degrees of freedom). In all cases the error does not exceed

0.35%. As expected, the best performance corresponds to

the 6-noded element. One should note, however, that the

lower order elements may be computationally more eco-

nomical in practical cases containing many voids, since in

such cases a lower number of nodes is be enough to

describe the deformation of the voids.

0 10 20 30 40 50 60
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Fig. 8 Convergence curve of the RVE. Values of the effective Young’s

modulus for samples with different random distributions of voids
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Fig. 9 Convergence curve of the RVE. Values of the effective

Poisson’s ratio for samples with different random distributions of voids

Table 2 Numerical results for

Young’s modulus on simulated

microstructures with various

random distributions of voids

Number

of voids

E�avg (MPa) E�max � E�min

(MPa)

Standard

deviation

E�max�E�
min

E�avg
� 100

(%)

Standard deviation
E�avg

� 100

(%)

2 165,129 12,450 3,932 7.54 2.38

4 163,019 11,388 2,661 6.99 1.63

6 162,331 9,380 1,904 5.78 1.17

8 162,237 11,032 1,762 6.80 1.09

10 161,955 6,860 1,756 4.24 1.08

15 161,437 5,736 1,406 3.55 0.87

20 160,713 4,840 1,018 3.01 0.63

25 160,096 4,077 988 2.55 0.62

30 159,910 4,447 994 2.78 0.62

40 159,622 3,550 868 2.22 0.54

50 159,163 3,415 820 2.15 0.52

60 159,575 4,106 819 2.57 0.51
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Example 2: plate with uniform array of holes

In this example, the microstructure is composed by a

periodic pattern of regularly spaced voids. A drawing of the

test specimen and the characteristic dimensions of the unit

cell structure are depicted in Fig. 13. Experimental results

for an Aluminum plate with the same configuration sub-

mitted to axial loadings are available [20]. The material

used has Em = 72,700 MPa and mm = 0.34. The thickness

of the plate is t = 2 mm and the distance between a hole

near the free surface and the edge is t/2-R. The effective

Young’s modulus for a specimen with 25 holes (volume

fraction of /1 = 0.0707) is 59,259 MPa, while the

Table 3 Numerical results for

Poisson’s ratio on simulated

microstructures with various

random distributions of voids

Number

of voids

m�avg m�max � m�min Standard

deviation

m�max�m�
min

m�avg
� 100

(%)

Standard deviation
m�avg

� 100

(%)

2 0.287 0.059 0.015 20.38 5.16

4 0.298 0.076 0.016 25.43 5.21

6 0.309 0.050 0.011 16.22 3.47

8 0.310 0.026 0.006 8.53 1.89

10 0.311 0.030 0.007 9.74 2.29

15 0.315 0.022 0.006 7.13 1.83

20 0.320 0.019 0.004 6.07 1.15

25 0.324 0.021 0.005 6.46 1.48

30 0.327 0.021 0.004 6.50 1.35

40 0.328 0.015 0.004 4.64 1.15

50 0.331 0.011 0.003 3.43 0.85

60 0.328 0.032 0.006 9.85 1.75
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Fig. 10 Convergence of the effective Young’s modulus
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Fig. 11 Convergence of the effective Poisson’s ratio
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Fig. 12 Convergence of the effective strain energy

Table 4 Comparison of various methods to estimate effective properties

E* (MPa) l* (MPa) m*

Dilute distribution E�DD ¼ Em

1þ3/ ¼ 170; 593 l�DD ¼ Em

2 1þmmþ4/ð Þ ¼ 65; 298 0.306

Mori-Tanaka E�MT ¼
Em 1�/ð Þ

1þ2/ ¼ 167; 963 l�MT ¼
lm 1�/ð Þ 1þmmð Þ
1þmmþ/ 3�mmð Þ ¼ 64; 271 0.307

Self-consistent E�SC ¼ Em 1� 3/ð Þ ¼ 161; 490 l�SC ¼
Em 1�3/ð Þ

2 1þ/þmm 1�3/ð Þ½ � ¼ 61; 745 0.308

Present work 160,096 60,459 0.324
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corresponding values for a specimen with 121 holes (vol-

ume fraction /2 = 0.3848) is 26,531 MPa.

A plane stress model with 6-noded hole elements was

used for each case. Note that the microstructure has

orthotropic geometric symmetry but in this particular case,

the effective Young’s moduli are the same in x1 and x2

directions and then Eqs. (18) and (19) can be used. The

estimated effective Young’s moduli obtained are 56,692

and 28,340 MPa for /1 and /2 volume fractions, respec-

tively. In Table 6, these results are presented with

analytical predictions and Dong’s [19] numerical results

for the same unit cell but a different Poisson’s ratio.

Conclusions

A general procedure for estimation of effective properties of

micro-structured materials containing randomly distributed

cylindrical voids has been presented. The procedure

combines the average field theory and statistical analysis

with the boundary element method. The standard boundary

element formulation is used to model the outer matrix

boundary, while a special hole boundary element is

employed to model each void. This approach is particularly

suitable to solve repetitive problems with a large number of

voids, such as the typical ones found in RVE analysis, since

the amount of data and computational cost is drastically

reduced. In addition, the microstructure discretization

strategy becomes rather simple when compared to the

conventional BEM or other discretization methods. The

scheme preserves the BEM computational advantage by

using boundary-only data. A natural follow on this topic is

the derivation of a spherical hole element for three-dimen-

sional analysis, and the present work provides a starting

point towards such element, since all it is needed is a double

integration over the surface of the element, instead of our

single integration over the perimeter of the hole.

Expressions for effective properties in function of the

micro-fields both for isotropic and transversally isotropic

hypothesis have been derived.

Application examples have been illustrated by estimating

the effective elastic properties of a micro-structured material

with holes distribution taken from NCI samples and from a

plate containing uniform array of holes. The results have

shown good agreement with those available from the literature.

The proposed approach has great potential to be used for

modeling problems with non-linear behavior, as well as

problems with high volume fraction, when many of the

available analytic models fail. Some further improvements

can be addressed, like the use of fast multipole techniques

[27, 28] to analyze large-scale problems. Furthermore, the

formulation can be straightforwardly extended to three-

dimensional problems.

Table 5 Relative errors of the

hole element. (�)BEM refers to

the results obtained using

conventional hole discretization

with 16 quadratic elements

Type of boundary

element

Relative error

of effective

Young’s modulus

E�
hole element

�E�
BEM

E�
BEM


� 100 (%)

Relative error

of effective

Poisson’s ratio

m�
hole element

�m�
BEM

m�
BEM


� 100 (%)

Relative error

of effective

strain energy

U�
U�

hole element
�U�

BEM

U�
BEM


� 100 (%)

3-noded 0.35 0.185 0.317

4-noded 0.086 0.25 0.036

5-noded 0.078 0.14 0.05

6-noded 0.024 0.007 0.023

Table 6 Comparative values of

E*/Em
Volume

fraction

E*/Em

Hole element

(mm = 0.34)

Experimental

(mm = 0.34)

Analytical Dong [19]

(mm = 0.3)

0.0707 0.78 0.815 0.788 (self-consistent) 0.824

0.3848 0.39 0.365 0.348 (Mori-Tanaka) 0.407

Fig. 13 Representation of the unit cell from a test specimen [20]
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Appendix

The shape functions used by the hole elements are presented

below.

• 3-noded element (as proposed by Henry and Banerjee [4]):

M1 hð Þ ¼ 1

3
þ 2

3
cos h

M2 hð Þ ¼ 1

3
þ

ffiffiffi
3
p

3
sin h� 1

3
cos h

M3 hð Þ ¼ 1

3
�

ffiffiffi
3
p

3
sin h� 1

3
cos h

• 4-noded element:

M1 hð Þ ¼ 1þ cos hð Þ
2

cos h

M2 hð Þ ¼ 1

2
þ 1

2
sin h� 1

2
cos2h

M3 hð Þ ¼ �1þ cos hð Þ
2

cos h

M4 hð Þ ¼ 1

2
� 1

2
sin h� 1

2
cos2h

• 5-noded element:

M1 hð Þ ¼
cos2hþ cos p

5

� �
cos h� cos 2p

5

� �
cos h� cos p

5

� �
cos 2p

5

� �
cos p

5

� �
cos 2p

5

� �
� cos p

5

� �
þ cos 2p

5

� �
� 1

M2 hð Þ ¼
cos 2p

5

� �
cos hsin h� cos p

5

� �
sin hþ cos p

5

� �
cos 2p

5

� �
sin h� cos hsin h

W

þ
sin 2p

5

� �
cos2h� sin 2p

5

� �
cos hþ sin 2p

5

� �
cos p

5

� �
cos h� sin 2p

5

� �
cos p

5

� �
W

M3 hð Þ ¼
cos 2p

5

� �
cos p

5

� �
sin hþ cos 2p

5

� �
sin h� cos p

5

� �
cos hsin h� cos hsin h

R

þ
sin p

5

� �
cos2h� sin p

5

� �
cos 2p

5

� �
cos h� sin p

5

� �
cos hþ sin p

5

� �
cos 2p

5

� �
R

M4 hð Þ ¼
�cos 2p

5

� �
cos p

5

� �
sin h� cos 2p

5

� �
sin hþ cos p

5

� �
cos hsin hþ cos hsin h

R

þ
sin p

5

� �
cos2h� sin p

5

� �
cos 2p

5
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cos h� sin p

5

� �
cos hþ sin p

5
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cos 2p

5

� �
R

M5 hð Þ ¼
�cos 2p

5
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cos p

5
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sin h� cos 2p

5
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sin hcos hþ cos p

5

� �
sin hþ cos hsin h

W

þ
sin 2p

5

� �
cos2hþ sin 2p

5

� �
cos p

5

� �
cos h� sin 2p

5
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cos h� sin 2p

5
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cos p
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The shape functions for 4, 5, and 6-noded elements were

proposed in [13]. It is important to point out that all the

functions describe exactly rigid body movements of the holes.
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